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One-point statistics of the induced electric field in quasinormal magnetofluid turbulence

L. J. Milano, W. H. Matthaeus, B. Breech, and C. W. Smith
Bartol Research Institute, University of Delaware, Newark, Delaware 19716

~Received 12 June 2001; published 24 January 2002!

We study one-point statistical properties of the induced turbulent electric field for a magnetohydrodynamic
~MHD! plasma under the quasinormal approximation. Assuming exact Gaussianity for both the velocity field
and the magnetic field, and different degrees of correlations between their Cartesian components, we derive the
probability distribution function~PDF! for the Cartesian components of the electric fieldei . We show that the
PDF reduces in some canonical cases to an exponential function of the form exp(2ueiu). To study deviations
from these results in the more realistic case in which the velocity and magnetic fields are not exactly normal
but quasinormal instead, we perform three-dimensional numerical simulations of the MHD equations at mod-
erate Reynolds numbers. For turbulent relaxation from an initial condition, we find that the analytical results
give a very good first-order approximation to the computed PDF.

DOI: 10.1103/PhysRevE.65.026310 PACS number~s!: 47.27.2i, 47.65.1a
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I. INTRODUCTION

The induced electric field plays a key role in the slo
evolution of a plasma. Such an evolution is usually descri
by the magnetohydrodynamic~MHD! equations. In these
equations, the electric fieldE is eliminated in terms of the
magnetic fieldB by means of a simplified Ohm’s law,

E52V3B1h j , ~1!

whereh is the resistivity,j5“3B is the electric current, and
V is the velocity field. The first term in the right-hand sid
~rhs! of Eq. ~1! is referred to as the induced electric fiel
Ohm’s law allows us to write the MHD induction equation

] tB5“3~V3B!1h¹2B, ~2!

which states that the time evolution of the magnetic field
governed by the curl of the induced electric field.

Here we study the statistical properties of the induc
electric field in fully developed MHD turbulence. In this sc
nario, both the velocity and the magnetic field are usua
modeled as homogeneous, isotropic random variables. N
theless, in more realistic situations the dynamical fields n
to be decomposed as

V5V01v, ~3!

B5B01b, ~4!

where V05^V&, B05^B&, and the^ & operator denotes a
ensemble average. Note that, by definition

^v&505^b&. ~5!

It is important to note that the statistical behavior ofv andb
exerts an influence on the evolution of the mean fields.
instance, taking the ensemble average of Eq.~2! we obtain

] tB05¹3~V03B0!1¹3^v3b&1h¹2B0 . ~6!

The second term in the rhs of Eq.~6! reflects the action of the
mean induced electric field of the fluctuations on the me
1063-651X/2002/65~2!/026310~8!/$20.00 65 0263
d

s

d

y
e-
d

r

n

magnetic field. This term is responsible for the generation
large scale magnetic fields from a turbulent velocity field
phenomenon known as the ‘‘dynamo effect’’~see, for in-
stance, Ref.@1#!. It is this fluctuating component of the elec
tric field

e52v3b ~7!

that we are interested in in this paper. Not only its me
value drives the evolution of the mean magnetic field, bue
itself drives the evolution of the fluctuating magnetic field,
can be seen by subtracting Eq.~6! from Eq. ~2!. Thus the
statistics ofe may be expected to drive the statistics of] tb in
a way similar to that by which the statistics of pressure a
advection drive the statistics of] tv in hydrodynamics@2#.
Beyond the scope of MHD, the turbulent induced elect
field may also have an~as yet unexplored! important role in
charged particle acceleration, transport, and diffusion.

Despite its relevance, little effort has been devoted
study the statistical properties of the turbulent induced e
tric field. To our knowledge, the only astrophysical observ
tional paper reporting statistics of turbulent electric fields
Ref. @3# for the solar wind. This context, the solar wind
provides perhaps the best opportunity for direct obser
tional study of the active plasma turbulence, including t
turbulent induced electric field. A Kolmogorov-like powe
spectrum has been reported for the components ofe, but no
information on the probability distribution function~PDF! of
e is given. Numerical simulations of the particle accelerati
in turbulent reconnection@4# show in fact histograms fore,
which are more peaked than a Gaussian, but poorly resol

In principle, all the one-point statistical properties ofe can
be derived from its PDF. The PDF fore, in turn, may be
computed in terms of the joint PDFs forv andb. As a natural
starting point, we assume that bothv and b are Gaussian
random variables. It has been long known that the veloc
field in the fluid turbulence may be regarded as a quasin
mal, random~vector! variable. Early experiments~see, for
example, Ref.@5#! demonstrated that the PDFs for the com
ponents of the velocity field are very close to Gaussian d
tributions, and that the kurtosis@K(x)5^x4&/^x2&2, where
©2002 The American Physical Society10-1
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^x&50# of these components is accordingly very close to
Gaussian value of 3. This result is also valid in MHD, whe
both v andb are approximately Gaussian~see, for instance
@6#!. There is also substantial direct observational evide
that the magnetic field fluctuations in the solar wind are n
mal to a good approximation@7,8#.

It is worth mentioning that many closure theories for tu
bulence, such as the eddy damped quasinormal Marko
~EDQNM! model~see, for instance,@6# for a review! rely on
the quasinormal approximation@9,10#, which consists of the
assumption that fourth-order moments of the fieldsv andb
are exactly Gaussian, which closes the infinite hierarchy
statistical moments. Here, instead, we simply assume e
Gaussianity of these fields for the sole purpose of obtain
an approximate PDF for the electric field. An important r
mark needs to be made at this point. Closure theories
turbulence deal with two-point correlations, and thus are
rectly related to two-point PDFs. The statistics in this ca
turn out to be clearly non-Gaussian when the separation
tween the two points is in the dissipation range. However
the separation between the two points tends to the inte
scale, the points become uncorrelated and the one-p
quasi-Gaussian statistics are recovered@6,11#. Remarkably,
even though a considerable amount of research has
done in one-point and two-point statistics of the velocity a
magnetic fields in magnetofluid turbulence, the statistics
the turbulent induced electric field have almost been igno
We hope that this paper starts filling this gap.

The manuscript is organized as follows. In Sec. II we se
for analytical expressions for the PDF of the components
e under the assumption of different degrees of correlat
between the components ofv andb. A preliminary numerical
examination of these results is performed in Sec. III. Fina
we summarize the results and present our conclusions in
IV.

II. ANALYTICAL MODEL FOR THE PDF OF THE
INDUCED ELECTRIC FIELD

We want to obtain an expression for the PDF of any co
ponent ofe, say

el5v ibj2v jbi , ~8!

where the cyclic indices$l,i,j % all take different values be
tween 1 and 3, according toe52v3b. For simplicity in the
notation, we will consider a random variablez of the form

z[x1x22x3x4 , ~9!

which simply reflects the change in variable
$el ,v i ,bj ,v j ,bi%→$z,x1 ,x2 ,x3 ,x4%. An important simplifi-
cation comes from the hypothesis of variance isotropy@12#
~that we will use throughout the paper, unless explici
stated!. Variance isotropy, that is,sv i

5sv j
andsbi

5sbj
for

all i,j 51,2,3 impliessv i
sbj

5sv j
sbi

, or in terms of Eq.~9!,

s1s25s3s4 , ~10!
02631
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wheresx5s(x) stands for the standard deviation ofx and
s i[s(xi).

A. Uncorrelated Gaussians

Calculations are much simplified under the hypothesis
statistical independence of the variablesx1 ,x2 ,x3 ,x4 . Even
though many astrophysical and laboratory plasmas have
appreciable amount of correlation betweenv and b, the
working assumption of uncorrelated fields is often used
theoretical modeling and numerical exploration of MHD tu
bulence due to its relative simplicity. We use it here to intr
duce our calculations in the simplest possible context.

A first point to note is that ifx1 andx2 are independent
then

^~x1x2!n&5^x1
n&^x2

n&. ~11!

This expression, in turn, simplifies the calculation of the m
ments of combinations of the various$xi%. In particular,

s^x1x2&5s1s2 , ~12!

K~x1x2!5K1K259, ~13!

s~x1x22x3x4!5&s1s2 , ~14!

K~x1x22x3x4!5 1
2 K1K21 3

2 56, ~15!

where Kx5K(x) is the kurtosis ofx and Ki[K(xi). The
numerical values given for the kurtosis only hold when t
variables$xi% are all Gaussians, in which caseKi53 for
all i.

We now compute the PDF for a component of the elec
field. We proceed in two steps: we first compute the PDF
a variable of the form

s[x1x2 , ~16!

and we then proceed to compute the distribution of

z[s12s2 , ~17!

wheres1 ands2 are both of the form Eq.~16!. We use Eq.
~A3! from the Appendix:

f ~s!5E f 1~x1! f 2~x2!d~s2x1x2!dx1dx2

5E f 1~x1! f 2~s/x1!
dxi

ux1u
, ~18!

where f (x) stands for the PDF of the random variablex, f i
[ f (xi) and we used the relationd(s2x1x2)5ux1u21d(x2
2s/x1). Note that in Eq.~18! we made use of the statistica
independence to writef (x1 ,x2)5 f 1(x1) f 2(x2). We now re-
place f 1 and f 2 in the integral by Gaussians of dispersio
s1 ands2 ,

f i[
1

A2ps1

expF2
1

2 S x1

s1
D 2G . ~19!
0-2
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Assumings.0, we change variablesx1→u[x1 /(s1A2s),
so that the integral Eq.~18! reads

f ~s!5
1

pss
E

0

`

expF2sS u21
1

4ss
2u2D G du

u

5
1

pss
K0S s

ss
D , s.0, ~20!

where ss[s1s2 @see Eq.~12!# and K0(x) is a modified
Bessel function of the second kind. It is evident thatf (s) is
an even function ofs @ f (s)5 f (2s)#, so we can replaces
→usu to obtain

f ~s!5
1

pss
K0S usu

ss
D . ~21!

We can now compute moments of arbitrary~even! order~odd
moments vanish!:

^sn&5
1

pss
E snK0S usu

ss
Dds5ss

n@~n21!!! #2. ~22!

As a consistency check, we note that the same result ca
obtained from Eq.~11! and the well known result for eve
moments of a Gaussian variable. Also, Eq.~22! implies Ks
59, in agreement with Eq.~13!.

Now we are in a position of finding the PDF for the com
ponents of the induced electric field. We consider a varia
of the form @see Eq. ~17!# z5s12s2 , where f i(si)
5(1/pssi

)K0(usi u/ss1
). In this case, Eq.~A3! yields

f ~z!5E f 1~s1! f 2~s2!d~z2s11s2!ds1ds2

5E f 1~s1! f 2~z2s1!ds1 , ~23!

where we used the parity off 2 . We immediately notice tha
the problem reduces to the convolution of twoK0 functions.
The convolution theorem for cosine Fourier transforms
even functionsf 1 and f 2 , reads

1

2 E f 1~s! f 2~z2s!ds5S p

2 D 1/2

F21@F~ f 1!F~ f 2!#, ~24!

whereF stands for the cosine Fourier transform. The dir
transforms of Eq.~21! are straightforward. Assumingz.0,

F~ f i !5
1

A2pA11~kssi
!2

, i 51,2. ~25!

If ss1
5ss2

@which is ensured by the variance isotropy co
dition, Eq. ~10!#, we can compute the inverse transform
Eqs.~23! and ~24!,

f ~z!5
1

2ss1

expS 2
z

ss1
D , z.0. ~26!
02631
be

le

r

t

-

But we know thatf (z)5 f (2z), so we can write in genera
@see Eqs.~8! and ~9!#

f ~cl !5
1

&sel

expS 2
&

sel

uel u D , ~27!

where, according to Eq.~14!

sel
5&sv i

sv j
, iÞ j . ~28!

It can be checked by simple integration from Eq.~27! that
f (el) is properly normalized, and that the standard deviat
of el is preciselysel

.

B. Dynamo-type correlated Gaussians

There are at least two cases in which the hypothesis
statistical independence of the variablesx1 ,x2 ,x3 ,x4 is in-
consistent with the physical situation:~a! in the presence of
cross helicityHc[^v"b& and ~b! in the presence of an effi
cient dynamo. This inconsistency is evident in the form
case, since statistical independence impliesHc5^v ibi&
5^v i&^bi&50 @where we have used Eq.~5! and the standard
repeated index summation notation#. In the latter case, the
most relevant quantity is the mean induced electric field
the fluctuations, which is preciselŷe&52^v3b&. If the
components ofv and b are statistically independent, the
^e&50. It is important to note that the converse is not tru
For instance,̂ ez&50 implies^vxby&5^vybx&, but this does
not imply statistical independence.

We study the caseHc50, eÞ0 ~dynamo type! in this
section, and leave the caseHcÞ0, e50 ~cross helicity type!
for the following section. The calculations we are going
perform are similar to the ones in the preceding section.
will assume that the pairs (x1 ,x2) and (x3 ,x4) are each well
described by Gaussian joint PDFsf 12 and f 34 of the form
@13#,

f i j [
1

2ps is jA12r i j
2

expH 2
1

2~12r i j
2 !

3F S xi

s i
D 2

22r i j

xi

s i

xj

s j
1S xj

s j
D 2G J , ~29!

where

r i j [
^xixj&
s is j

. ~30!

Note that the mean value ofz can be written in terms ofr12
andr34,

^z&5~r122r34!s1s2 . ~31!

That is, the mean induced electric field is nonzero, unl
r125r34. We now proceed as in the preceding section.
first compute the PDF fors5x1x2 from Eq. ~A3!. The cal-
culation is similar to the one leading to Eq.~21!, now
yielding
0-3
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f ~s!5
A12r12

2

pa12
expS r12

a12
sDK0S usu

a12
D , a12[~12r12

2 !s1s2 .

~32!

The next step is to write the PDF forz5s12s2 using Eq.
~A3! as in Eq.~23!; to make the integral tractable, we assum

r1252r34[r. ~33!

In this case, the exponentials in front of Eq.~32! cancel their
‘‘ s’’ dependence when computing the productf 1f 2 in Eq.
~23!, contributing just a factor exp@(r12/a12)z#, which drops
out of the integral. The problem is thus reduced to the eva
ation of the convolution of a functionK0(usu/a12) with itself,
which yields an exponential as we saw in the preceding s
tion. The final result can be expressed as

f ~el !5
1

2sv i
,sv j

expF2
uel u

sv i
sv j

~11sgn~z!r!G , ~34!

where sgn(z) is the function ‘‘sign of z’’ and r
5^el&/(2sv i

sv j
). Interestingly, the PDF forel is an expo-

nential f ;exp(2uelu/s1) when el.0, and a different expo-
nential f ;exp(2uelu/s2) when el,0, with s1 /s25(1
1r)/(12r). Whenr505^el&, Eq. ~34! reduces to the un
correlated result Eq.~27!.

We can compute the standard deviation ofz5el from Eq.
~34!. However, it is better to do it in terms ofs1 and s2 ,
which will give us a result for genericr1 andr2. Equation
~30! simply states that ^s1&5r12s1

2s2
2, and ^s1

2&5(1
12r12

2 )s1
2s2

2 by integration from Eq.~32!. We now use these
results~and the analogous forms for^s2& and^s2

2&! to obtain

sel
5sz5s1s2A21r12

2 1r34
2 . ~35!

Note that Eq.~35! reduces to Eq.~14! whenr12505r34.
We note that a realistic dynamo may depart significan

from our calculations. Recent results in dynamo theory
fact suggest that Alfve´n waves play a key role in magnet
field generation@14,15#. This in turn implies a strong loca
correlation~neglected in this section! between the velocity
and magnetic fields, since Alfve´n waves satisfyu•b/uuuubu
561.

C. Cross helicity-type correlated Gaussians

We focus now on a model for the case in which the cr
helicity is finite ~see the discussion in the preceding secti!
and the mean induced electric field is zero~or HcÞ0, e50!.
The cross helicity is one of the rugged ideal invariants
MHD and is present in many real world turbulent system
The inner solar wind, for example, has non-negligible cr
helicity @16# as a general rule, although in some cas
@17,18#, especially in the outer heliosphere@19#, the cross
helicity is very small. In the extreme case in which the cro
helicity is maximum~i.e., when the normalized cross helici
is 61!, however, no turbulence is possible, since the non
ear terms in the MHD equations completely vanish@20#.
02631
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In terms of the$xi% variables, we will have to conside
correlations for the pairs (x1 ,x4) and (x2 ,x3). We apply Eq.
~A3! in just one step,

f ~z!5E f 14~x1 ,x4! f 23~x2 ,x3!

3d@z2~x1x22x3x4!#dx1 dx2 dx3 dx4 , ~36!

where bothf 14 and f 23 are given by Eq.~29!. It is trivial to
verify that in this case there is no mean electric field~for
instance, ^z&5^x1x2&2^x3x4&5^x1&^x2&2^x3&^x4&50!.
The standard deviation for the components of the elec
field can be computed very easily as well,

sz5s1s2A2~12r14r23!. ~37!

After integration in Eq.~36! we obtain~see the Appendix for
details!

f ~z!5
1

&sz
gexpS r14,r23,2

&

sz
uzu D , ~38!

wheresz is given by Eq.~37! and we defined

gexp~r1 ,r2 ,z!

[
A12r1r2

2p E
0

2p

expS Q1

Q2
A@12r1r2#/@12r1

2#zD
3

du

Q1Q2
, ~39!

Q i[A12r i sin~2u!. ~40!

Note that whenr15r2 , the exponential exp(z) drops out of
the integral in Eq.~39!, giving the result

gexp~r,r,z![ez. ~41!

It is evident from Eqs.~29! and ~36! that

gexp~r1 ,r2 ,z!5gexp~r2 ,r1 ,z!. ~42!

Figure 1 showsgexp(r1,r2,2uzu), evaluated numerically
for the casesr15r250.9 andr152r250.9. The first case
corresponds to an exponential, as indicated by Eq.~41!, and
hence has a kurtosis of 6. The other case shows a fla
function, yielding a kurtosis of 8.89. In fact, whenr1→1
and r2→21, and z→2x1x2 , which implies, according to
Eq. ~21!, that f (z)→(psz)

21K0(uzu/sz). That is,

lim
r→1

gexp~r,2r,2uzu!5
A2

p
K0~ uzu!. ~43!

In particular, in this limit the kurtosis is 9@see Eq.~13!#.

D. Variance anisotropic turbulence

So far we have assumed the validity of Eq.~10!, that is,
sv i

sbj
5sv j

sbi
. We note that even though variance isotro

implies Eq.~10!, such a relationship does not require va
0-4
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ance isotropy. For instance, consider the situation of co
pressible MHD turbulence in presence of a dc field in thz
direction. In this case,svx

'svy
@svz

, and sbx
'sby

@sbz

@12#. We immediately see that the variance isotropic res
are valid forez due to variance isotropy in the perpendicu
planes~variance axisymmetry!. For the perpendicular com
ponents ofe, on the other hand, the variance isotropic resu
are valid if svx

/svy
5sbz

/sbz
and svz

/svx
5sby

/sbz
,

which might be approximately satisfied in some situation
Even though we do not find analytical results for the ge

eral anisotropic case, there is a limit that is analytically tr
table. This is the limit in which

l[
s3s4

s1s2
→0. ~44!

Note that this limit would occur, for instance, if one of th
fluctuating fields was plane polarized, but the other was v
ance isotropic, in this case, the components ofe in the po-
larization plane would both satisfy Eq.~44!. Let us write Eq.
~A3! in the form

f ~z!5E FS x1

s1
,

x2

s2
,

x3

s3
,

x4

s4
D

3d@z2~x1x22x3x4!#dx1 dx2 dx3 dx4 , ~45!

where F(x1 ,x2 ,x3 ,x4) is the joint PDF forx1 ,x2 ,x3 ,x4 .
Making the change of variablesx̃i[xi /s i , z̃[z/(s1s2), we
can rewrite Eq.~45! as

f ~ ẑ!5s3s4E FS z̃2l x̃3x̃4

x̃2
,x̃2 ,x̃3 ,x̃4D dx̃2

ux̃2u
dx̃3d x̃4 ,

~46!

and taking the limitl→0,

f ~ ẑ!→s3s4E FS z̃

x̃2
,x̃2 ,x̃3 ,x̃4D dx̃2

ux̃2u
dx̃3 dx̃4 . ~47!

Note that the dependence in (x̃3 ,x̃4) can be integrated in a
first step, and finally the problem reduces to an integra

FIG. 1. Functiong exp(r1,r2,2uzu) for different parameters
(r1 ,r2)5(0.9,0.9) in solid line, and~0.9,20.9! in dashed. The kur-
tosis for these two cases is, respectively, 6 and 8.8.
02631
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x̃2 . It is straightforward to show that both for uncorrelate
Gaussians and cross-helicity-type correlated Gaussians
obtain @see Eq.~21!#

f ~el !→
1

psv i
sv j

K0S uel u
sv i

sv j
D ~48!

and for dynamo-type correlated Gaussians we obtain@see Eq.
~32!#

f ~el !→
A12r2

pa
expS r

a
zDK0S uzu

a D , a[~12r2!sv i
sv j

~49!

and r5^el&/sv i
sv j

. Note that all the solutions in this limi

are related toK0 functions. We recall thatK0 diverges loga-
rithmically at the origin, and decays faster than a sim
exponential,

K0^uzu&'2 lnS uzu
2 D1C, uzu!1, ~50!

K0~z!'S p

2 D 1/2e2uzu

Auzu
, uzu@1, ~51!

C'20.577 215 is Euler’s constant.
Figure 2 shows the distribution functionf (z) for small

but finitel50.1. The Gaussian random variables$xi% for the
plot are obtained with a Gaussian random number gener
Except for the discrepancy at the origin, the PDF forz is
fairly close to the asymptotic solution Eq.~48!. The plot
shows thatl does not need to get too small for the PDF to
close to Eq.~48!.

III. NUMERICAL RESULTS

We solve the standard MHD incompressible dissipat
equations using a pseudospectral Fourier technique as
scribed in Ref.@21#. We label our runs as follows.~i! ISO

FIG. 2. In solid line, the PDF for a random variablez[x1x2

2x3x4 . The $xi% variables are generated with a Gaussian rand
number generator, and satisfyl[s3s4 /s1s250.1 @see Eq.~44!#.
In dashed line: the exact result for the PDF ofz in the limit l→0
@see Eq.~48!#.
0-5
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run. This is an isotropic run, with no dc field. We letv(x,t)
and b(x,t) relax in time, from an isotropic initial condition
with no net mean magnetic field.

~ii ! dc run. We let a dc magnetic fieldB05B0ẑ act on the
plasma, and study the relaxation of the MHD fieldv(x,t) and
B(x,t)5B01b(x,t).

Both runs start with isotropic, power-law, random-pha
Gaussian (v,b) fields, with unit energy, zero cross helicit
and zero magnetic helicity. Note that these simulatio
should not be expected to produce significant dynamo ac
ity since there is a lack of helicity@1,22# in the preparation of
the system and there is no forcing. More explicitly, the init
fields are such that

Ev~k!5Eb~k!5
C

I 1~k/kknee!
5/3, ~52!

wherekknee54k0 , k0 being the smallest wave number of th
system.Ev(k) and Eb(k) are, respectively, the kinetic an
the magnetic omnidirectional power spectra. We defineL0
52p/kknee, our ‘‘energy containing scale,’’ as the un
length,u0 as the unit velocity and magnetic field~recall that
the magnetic field is written in velocity units! and l 0
5L0 /u0 as the unit time. The normalization constantC in
Eq. ~52! is chosen so that̂b2&5^v2&52(kE

v,b(k)51 ~at
t50!. For the dc run,Bdc51 as well. The magnetic Prand
number is set to 1, the macroscopic Reynolds number iR
5u0L0 /n5200 and the resolution is 1283 in all the runs. In
all cases the solutions approximately satisfy variance i
ropy: ^vx

2&'^vy
2&'^vz

2&, ^bx
2&'^by

2&'^bz
2&, where the

bracketŝ & mean here spatial average over the whole co
putational volume. The fluctuating fieldsv andb average to
zero at all times:̂ v&505^b&. These simulations were re
cently analyzed in the context of local development of a
isotropy in MHD @23#.

Figure 3 shows the PDF forez for the ISO run, att53.
The PDF is remarkably close to the exponential function
~27!, as it turns out from the figure. The dc run yields
similar result, as shown in Fig. 4. The PDFs for the comp

FIG. 3. In solid line, the PDF for one component of the elect
field ~in units of its standard deviation!, as computed from the iso
tropic simulation att53t0 . In dashed line: the exponential PD
predicted by Eq.~27!.
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nents ofv andb ~not shown! always lie close to a Gaussian
which is consistent with the quasinormal assumption of t
work, and in general with the quasinormal character of
turbulence.

A way to quantify the departure of the observed PD
from the predicted values is to measure their kurtosis. T
kurtosis for the components ofe has an interesting behavio
shown in Figs. 4 and 5. It seems evident that the kurto
tends to be smaller than 6 in the ISO case, and greater th
in the dc case. Nonetheless, the departure from the pred
value of 6 is always relatively small. Moreover, the departu
of the fieldsv and b themselves from Gaussianity is ver
small, with typical values for the kurtosis of their comp
nents between 3 and 3.1. We estimate the intrinsic statis
error of these measurements as the standard deviation o
set of values of the kurtosis for the components ofv andb
from the initial condition~which we recall are generated nu
merically as uncorrelated Gaussian variables!. We thus ob-
tain a value of 0.05 for the statistical error in computin
K(v i) and K(bi). We finally note that fort.0, about two-

FIG. 4. In solid line, the PDF for one component of the elect
field ~in units of its standard deviation!, as computed from the dc
simulation att53t0 . In dashed line: the exponential PDF predict
by Eq. ~27!.

FIG. 5. In solid line, the PDF for one component of the elect
field ~in units of its standard deviation!, as computed from the iso
tropic simulation. For each value of time, the valuesK(ex), K(ey),
andK(ez) are used to compute a mean value~displayed as a cross!
and the statistical error~displayed as a vertical bar!.
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thirds of the values of the kurtosis for the components ov
and b in our simulations are outside the range 3.0060.05.
We conclude that the evolution of our fields is very close
but not trivially Gaussian.

IV. SUMMARY AND CONCLUSIONS

In the present paper we study the statistical propertie
the induced turbulent electric field for a magnetohydrod
namic~MHD! plasma under the quasinormal approximatio
In Sec. II we assume exact Gaussianity for both the turbu
velocity field v and the turbulent magnetic fieldb, and find
analytical expressions for the PDF for the components of
fluctuating induced electrical fielde52v3b in some cases
of interest. The simplest and most appealing result is
tained when statistical independence is assumed for the c
ponents ofv andb. In this case, the PDF forel is simply an
exponential, see Eq.~27!. As mentioned above, statistica
independence implies zero cross helicityHc , and zero mean
turbulent induced electric field̂e& ~i.e., impossibility of a
dynamo effect!. In Secs. II B and II C we allow correlation
between the components ofv and b, to extend the model
respectively, to the cases of finite^e& and finiteHc . In the
former case, we obtain an analytical result when^v ibj&5
2^v jbi&, i.e., Eq.~34!: the PDF turns out to be an expone
tial of the form exp(2uelu/s1) for el.0, and an exponentia
of the form exp(2uel u/s2) for el,0. The PDF for the latter
case can be written in terms of a functiong exp(r1,r2,z),
which also reduces to an exponential when PDF wh
^v ibj&5^v jbi&, as indicated by Eqs.~38!–~41!.

All of these results assume variance isotropy for the t
bulent fluctuations. In Sec. II D we show that the effects
variance anisotropy are measured by a single parametl
5sv j

sbi
/sv i

sbj
. We find that for extreme variance aniso

ropy (l→0), the three cases considered before~i.e., uncor-
related Gaussians, dynamotype correlated Gaussians
cross-helicity-type Gaussians! give solutions related to modi
fied Bessel functionsK0 @see Eqs.~48! and ~49!#.

The use of exact normality in our calculations raises s
eral warnings. To begin with, the PDF allows computation
statistical moments of arbitrary order, while it is very we
known that higher-order moments are usually more pron
depart from Gaussian statistics than lower-order mome
are. Another point to consider is the fact that statistics
two-point correlations are usually very far from Gaussian
the separation between the correlated points is in~or close to!
the dissipation range~see for instance@6,11#!. In this regard
our one-point calculations are in the most favorable case,
the limit in which the separation tends to the integral sc
and the statistics are closer to being Gaussian. But any
tension of our calculations to two-point correlations needs
be done carefully. Finally, it needs to be kept in mind th
closure theories~more specifically the EDQNM! had to re-
fine the quasinormal approximation to the point of addin
phenomenological eddy viscosity and Markovianization
order to obtain physical results for the evolution of the e
ergy spectrum. Even though this issue is also related to t
point statistics, it should not be disregarded.

In Sec. III we report results from three-dimensional n
02631
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merical simulations of the MHD equations at moderate R
nolds numbers, where we investigate turbulent relaxat
from a broad-band initial condition, with no cross helicit
The PDFs for the components ofe are remarkably close to
the exponential function predicted in Eq.~27!, as shown in
Figs. 3 and 4. The dynamical departure from the exponen
PDF seems to depend on the presence of a backgroun
magnetic field. Figures 5 and 6 seem to indicate that in
absence of a dc field the kurtosis is slightly smaller than
while in the presence of a dc field it is slightly greater than
More numerical exploration may be needed to confirm t
trend. But in general, the comparison between the numer
and the analytical results allows us to be confident that
analytical results give a very good first-order approximat
to the problem, at least at moderate Reynolds numbers.
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APPENDIX: SOME USEFUL RELATIONS

Let z be a random variable that depends on another r
dom variablex, then

f ~z!5E p~zux! f ~x!dx, ~A1!

wheref is a PDF for its variable andp(zux) is the conditional
probability distribution for z given x. Consider now
the special case in whichz is deterministically related to
x by a known function z5c(x). In this case,p(zux)
5d(z2c(x)…,

FIG. 6. In solid line, the PDF for one component of the elect
field ~in units of its standard deviation!, as computed from the dc
simulation. For each value of time, the valuesK(ex), K(ey), and
K(ez) are used to compute a mean value~displayed as a cross! and
the statistical error~displayed as a vertical bar!.
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f ~z!5E f ~x!d„z2c~x!…dx. ~A2!

The extension of this result to multiple dimensions
straightforward. If $xi% is a set of n random variables
$x1¯xn%, then

f ~z!5E f ~x1 ,...,xn!d„z2c~x1 ,...,xn!…dx1¯dxn ,

~A3!

where f (x1 ,...,xn) is the joint PDF of the$xi% variables.
We now show how to obtain the PDF for the cros

helicity-type case, Eq.~38!, from Eq.~36!. Our first step is to
make a change to nondimensional variables, as in Eq.~46!.
We note that herel51 ~i.e., we are assuming variance iso
ropy!. We replaced„z2(x1x22x3x4)…5d„s1s2@ z̃2( x̃1x̃2
2 x̃3x̃4)#…5(1/ux̃1us1s2)d( x̃22 z̃/ x̃12 x̃3x̃4 / x̃1) in Eq. ~36!
and compute the trivial integral inx̃2 . We then compute the
-
e,

D.

r.

y

e

,

02631
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integral on x̃3 , which is of the form*exp(2Ax̃32Bx̃3
2)dẋ3

5Ap/B exp(A2/4B), where bothA and B.0 are constant
with respect tox̃3 . Rearranging terms and making a chan
to polar variables (x̃1 ,x̃4)→(r ,u), we can write the remain-
ing two-dimensional integral as

f ~ z̃!5
1

~2p!3/2s1s2A12r14
2 E expF2

Q14
2

2~12r14
2 !

r 2

2
z̃2

2Q23
2 r 22G dr du

Q23
, ~A4!

where we definedQ i j [A12r i j sin(2u). Making a last
change in variablesr→ r̂ according to@Q14

2 /2(12r14
2 )#r 2

5uz̃u r̂ 2, the integral in r̂ takes the form *exp(2uz̃u(r̂2

2A2/4r̂ 2)dr̂}exp(Auz̃u), where A depends onu. The exact
result is shown in Eq.~38!.
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