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One-point statistics of the induced electric field in quasinormal magnetofluid turbulence
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We study one-point statistical properties of the induced turbulent electric field for a magnetohydrodynamic
(MHD) plasma under the quasinormal approximation. Assuming exact Gaussianity for both the velocity field
and the magnetic field, and different degrees of correlations between their Cartesian components, we derive the
probability distribution functioPDF) for the Cartesian components of the electric field We show that the
PDF reduces in some canonical cases to an exponential function of the form|ejp{o study deviations
from these results in the more realistic case in which the velocity and magnetic fields are not exactly normal
but quasinormal instead, we perform three-dimensional numerical simulations of the MHD equations at mod-
erate Reynolds numbers. For turbulent relaxation from an initial condition, we find that the analytical results
give a very good first-order approximation to the computed PDF.
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[. INTRODUCTION magnetic field. This term is responsible for the generation of
large scale magnetic fields from a turbulent velocity field, a
The induced electric field plays a key role in the slowphenomenon known as the “dynamo effedSee, for in-
evolution of a plasma. Such an evolution is usually describedtance, Refl1]). It is this fluctuating component of the elec-
by the magnetohydrodynamigVMHD) equations. In these tric field
equations, the electric fiel@ is eliminated in terms of the
magnetic fieldB by means of a simplified Ohm'’s law, e=—-vXb @)

E=—-VXB+7), 1) that we are interested in in this paper. Not only its mean
value drives the evolution of the mean magnetic field, dout
itself drives the evolution of the fluctuating magnetic field, as
can be seen by subtracting E@) from Eg. (2). Thus the
statistics ofe may be expected to drive the statisticsids in
a way similar to that by which the statistics of pressure and
3B=V X (VXB)+ 7V?2B, (2)  advection drive the statistics @v in hydrodynamicg2].
Beyond the scope of MHD, the turbulent induced electric
which states that the time evolution of the magnetic field isfield may also have afas yet unexploredmportant role in
governed by the curl of the induced electric field. charged particle acceleration, transport, and diffusion.

Here we study the statistical properties of the induced Despite its relevance, little effort has been devoted to
electric field in fully developed MHD turbulence. In this sce- study the statistical properties of the turbulent induced elec-
nario, both the velocity and the magnetic field are usuallytric field. To our knowledge, the only astrophysical observa-
modeled as homogeneous, isotropic random variables. Nongonal paper reporting statistics of turbulent electric fields is
theless, in more realistic situations the dynamical fields nee®ef. [3] for the solar wind. This context, the solar wind,

wheren is the resistivityj =V X B is the electric current, and
V is the velocity field. The first term in the right-hand side
(rhg of Eq. (1) is referred to as the induced electric field.
Ohm’s law allows us to write the MHD induction equation

to be decomposed as provides perhaps the best opportunity for direct observa-
tional study of the active plasma turbulence, including the
V=Vy+v, (3)  turbulent induced electric field. A Kolmogorov-like power
spectrum has been reported for the components btit no
B=Bo+b, (4)  information on the probability distribution functidiPDF) of

eis given. Numerical simulations of the particle acceleration
where Vo=(V), Bo=(B), and the() operator denotes an i, tyrhulent reconnectiofd] show in fact histograms foe,
ensemble average. Note that, by definition which are more peaked than a Gaussian, but poorly resolved.
(v)=0=(b) ) In prjnciple, all _the one-point statistical_propertieserﬁan
' be derived from its PDF. The PDF fa; in turn, may be
It is important to note that the statistical behaviovaindb ~ COMPputed in terms of the joint PDFs ferandb. As a natural
exerts an influence on the evolution of the mean fields. Foptarting point, we assume that bothand b are Gaussian

instance, taking the ensemble average of @gwe obtain random variables. It has been long known that the velocity
' field in the fluid turbulence may be regarded as a quasinor-

3:Bo=VX (VX Bg)+ VX (vXb)+ nV2By. (6) mal, random(vectop variable. Early experimentésee, for
example, Ref[5]) demonstrated that the PDFs for the com-
The second term in the rhs of E®) reflects the action of the ponents of the velocity field are very close to Gaussian dis-
mean induced electric field of the fluctuations on the meartributions, and that the kurtosi (x)=(x*)/{x?)?, where
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(x)=0] of these components is accordingly very close to thevhere o,= o(x) stands for the standard deviation ofnd
Gaussian value of 3. This result is also valid in MHD, whereg,=o(X;).

bothv andb are approximately Gaussideee, for instance,

[6]). There is also substantial direct observational evidence A. Uncorrelated Gaussians

that the magnetic field fluctuations in the solar wind are nor- . S .
L Calculations are much simplified under the hypothesis of
mal to a good approximatiofv,8]. N :
statistical independence of the variablgsx,,X3,X,. Even

It is worth mentioning that many closure theories for tur- i
bulence, such as the eddy damped quasinormal Markoviatrli1ough many astrophysical and laboratory plasmas have an

(EDQNM) model(see, for instancdp] for a review rely on applr<<_90|able amo_unt ?f correla|t|ond k?.etl\évegnar;d b, th% f
the quasinormal approximatid®,10], which consists of the )[/;/]or 'ntg aissurr&ptl!on 0 émcorre .atel Iel S ,l.s 0 t?r,‘vllﬁgt or
assumption that fourth-order moments of the fieldand b ei'ore |cg m? _Eimgla? nu_me?cfstl e\>/<\5:) ora Iqtnho o1 tur—
are exactly Gaussian, which closes the infinite hierarchy oPu ence uel OII tS re a_lvizhsm_p ICII y.t € us_gll eretz Ot'n ro-
statistical moments. Here, instead, we simply assume exagf"CAef.outr ca ctuta |onts n the tSI'pr esd possible (;:on e)é' i
Gaussianity of these fields for the sole purpose of obtainincIJh ISt point to note 1s that 1k, andx; are independent,
an approximate PDF for the electric field. An important re-"€"
mark needs to be made at this point. Closure theories of n n /N

i . . . X1X =(X7){(X5). 11
turbulence deal with two-point correlations, and thus are di- ((x02)") =) (x2) (D
rectly related to two-point PDFs. The statistics in this caserhis expression, in turn, simplifies the calculation of the mo-

turn out to be clearly non-Gaussian when the separation benents of combinations of the variofis;}. In particular,
tween the two points is in the dissipation range. However, as

the separation between the two points tends to the integral 0{(X1Xo) = 0107, (12
scale, the points become uncorrelated and the one-point

quasi-Gaussian statistics are recovejeéd1]. Remarkably, K(x1X2) =K;1K;=9, (13
even though a considerable amount of research has been

done in one-point and two-point statistics of the velocity and 0(X1X2— X3X4) =V201073, (14
magnetic fields in magnetofluid turbulence, the statistics of

the turbulent induced electric field have almost been ignored. K(X1X2—XgXq) = 3K 1K+ 3 =86, (19

We hope that this paper starts filling this gap. ) _

The manuscript is organized as follows. In Sec. Il we seeRVNere Ky=K(x) is the kurtosis ofx and K;=K(x;). The
for analytical expressions for the PDF of the components oftUmerical values given for the kurtosis only hold when the
e under the assumption of different degrees of correlatioy@riables{x} are all Gaussians, in which casg=3 for

between the componentswindb. A preliminary numerical all i. )
examination of these results is performed in Sec. III. Finally, W& now compute the PDF for a component of the electric

we summarize the results and present our conclusions in Set€!d- We proceed in two steps: we first compute the PDF for

V. a variable of the form
S=X1Xa, (16)
II. ANALYTICAL MODEL FOR THE PDF OF THE
INDUCED ELECTRIC FIELD and we then proceed to compute the distribution of
We want to obtain an expression for the PDF of any com- Z=S,—5,, (17)

ponent ofe, say
wheres; ands, are both of the form Eq(16). We use Eq.

e=vib;—v;b;, (8) (A3) from the Appendix:
where the cyclic indicedl,i,j} all take different values be- f(s)=f f1(X1) Fo(X2) S(S—X1X2)dX A X,
tween 1 and 3, according &= —vXb. For simplicity in the
notation, we will consider a random varialdef the form dx;
:f f1(xq)fa(s/xq) AR (18)

Z=X1Xp— X3Xy, ©)
wheref(x) stands for the PDF of the random variablef;
which simply reflects the change in variables:=f(x;) and we used the relatioA(s—x,X,)=|x1|~18(x,
{e/,vi.bj,vj,bi}—{z,x1,X2,X3,X,}. An important simplifi- ~ —s/x;). Note that in Eq(18) we made use of the statistical
cation comes from the hypothesis of variance isotrff8]  independence to writé(x;,X,) =f1(X1)f2(X,). We now re-
(that we will use throughout the paper, unless explicitlyplacef,; andf, in the integral by Gaussians of dispersions
stated. Variance isotropy, that isrvi=crvj and O, = O, for oy andoy,

alli,j=1,2,3 impIies«rUiabjzavjabi, or in terms of Eq(9),

. 1 p[ 1(x1 2
= exg— | —
010,=030y, (10 V2mo, 2oy

(19
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Assumings>0, we change variablesl—>uzx1/(crl\/2—s),
so that the integral Eq18) reads

1 ©
f(s)= p— fo exr{—s

1 S
= KO(_)a S>01

TOg oy

du
u

(20

where o,=0,0, [see EQ.(12)] and Ky(x) is a modified
Bessel function of the second kind. It is evident thég) is
an even function os [f(s)=f(—s)], so we can replace
—|s| to obtain

1 (ISI
f(S)= KO -

TOg Oy

. (21

We can now compute moments of arbitréeyen order(odd
moments vanish

1 El
(s”):Ffs“KO<U—)ds=ag[(n—1)!!]z. (22
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But we know thatf(z) =f(—2z), so we can write in general
[see Eqs(8) and(9)]

f(c)=——exq — e @
c)= expg ——|el ],
| ‘/20'e| O, !
where, according to Eq14)
e =\/§0’Uia'vj, i #]. (28

It can be checked by simple integration from ER7) that
f(e) is properly normalized, and that the standard deviation
of g is preciselyael.

B. Dynamo-type correlated Gaussians

There are at least two cases in which the hypothesis of
statistical independence of the variablesx,,xz,x, Is in-
consistent with the physical situatio@) in the presence of
cross helicityH.={v-b) and (b) in the presence of an effi-
cient dynamo. This inconsistency is evident in the former
case, since statistical independence implids=(v;b;)
=(v;){b;)=0 [where we have used E¢p) and the standard

As a consistency check, we note that the same result can bepeated index summation notatjoin the latter case, the

obtained from Eq(11) and the well known result for even

moments of a Gaussian variable. Also, E22) implies K¢
=9, in agreement with Eq13).

most relevant quantity is the mean induced electric field of
the fluctuations, which is precisel{e)=—(vxb). If the
components ofv and b are statistically independent, then

Now we are in a position of finding the PDF for the com- (¢)=0. It is important to note that the converse is not true.
ponents of the induced electric field. We consider a variablgor instance{e,)=0 implies(v,b,)=(v,b,), but this does

of the form [see Egq. (17)] z=s;—s,, Where fi(s)
=(Umas)Ko(lsil/os). In this case, EQ(A3) yields

f(Z):j f1(s1)fa(s2) 8(z— 81+ 8,)ds,ds,
:f f1(s1)fa(z—s;)ds,, (23

where we used the parity ¢f,. We immediately notice that
the problem reduces to the convolution of tig functions.

The convolution theorem for cosine Fourier transforms for

even functiond; andf,, reads

T 1/2
E) FUF(fOF(f2)], (24

1 —
§f f1(s)fo(z—s)ds=

whereF stands for the cosine Fourier transform. The direct

transforms of Eq(21) are straightforward. Assuming>0,

1
F(f)= i=

V2m 1+ (kog)?’

1,2. (25)

If 05, =0s, [which is ensured by the variance isotropy con-
dition, Eqg. (10)], we can compute the inverse transform in

Egs.(23) and(24),

(26)

not imply statistical independence.

We study the casél.=0, e#0 (dynamo typg in this
section, and leave the cabe+# 0, e=0 (cross helicity typg
for the following section. The calculations we are going to
perform are similar to the ones in the preceding section. We
will assume that the pairx(,x,) and (x3,x,) are each well
described by Gaussian joint PDFg, and f5, of the form
[13],

; 1 p[ 1
N 2770'i0'j\/1_Pi2j 2(1_pi2j)

X; 2 Xj Xj Xj 2
XN = —2pij— —+|—| | (29)
(o] g O'J' (Tj
where
(XX

Note that the mean value afcan be written in terms g,
andpay,

(2)=(p12—p34) T1072. (3D
That is, the mean induced electric field is nonzero, unless
p12=p34. We now proceed as in the preceding section. We
first compute the PDF fos=Xx;x, from Eqg. (A3). The cal-
culation is similar to the one leading to E¢1), now
yielding
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[1-p2, P12 E In terms of the{x;} variables, we will have to consider
f(s)= exp{—s Kol — 1/, alzz(l—piz)olaz. correlations for the pairsxg,x,s) and x»,x3). We apply Eq.
a1z a1 a12 (A3) in just one step,
(32)
The next step is to write the PDF fa=s;—s, using Eq. f(z)=f f14(X1,X4) T23(X2,X3)

(A3) as in Eq.(23); to make the integral tractable, we assume
X 8[2— (X1 X —X3X4) JdXy dXp X3 dX4,  (36)
P12= ~ P34=p- (33
where bothf, and f,5 are given by Eq(29). It is trivial to
In this case, the exponentials in front of E§2) cancel their  verify that in this case there is no mean electric fiéior
“s’ dependence when computing the produgf, in Eq.  instance, (z)=(X;1Xp)— (X3Xs)= (X )(Xp) — (X3){X4)=0).
(23), contributing just a factor eXfp;»/a;,)z], which drops  The standard deviation for the components of the electric
out of the integral. The problem is thus reduced to the evalufield can be computed very easily as well,
ation of the convolution of a functioly(|s|/a;,) with itself,
which yields an exponential as we saw in the preceding sec- 0,=0102V2(1 = p1apr3). (37)

tion. The final result can be expressed as . L . .
After integration in Eq(36) we obtain(see the Appendix for

1 e/ detail9

vir Yy

f(e)=

V2
) , (38)

1
f(Z):mgeXF{P141P23'_;|Z|
where sgrf) is the function “sign of 2 and p z z
=(&)/(20,,0,). Interestingly, the PDF fog, is an expo-  wherea, is given by Eq.(37) and we defined
nential f ~exp(—|g|/a,) whene >0, and a different expo-
nential f~exp(—|gl/c_) when <0, with o,/oc_=(1 gexp(p1.p2.2)
+p)/(1—p). Whenp=0={(e)), Eq.(34) reduces to the un- M= o fon
co’?r)el(atedp)result Ec’()27). (e, Fa- 34 EMJZ ex;{&\/[l—plpz]/[l—pf]z)

We can compute the standard deviatiorzefe, from Eq. 2m 0 0,
(34). However, it is better to do it in terms &f; ands,, de
which will give us a result for generip; andp,. Equation X—
(30) 2s:imzpl% states that(s;)=p0503, and (s?)=(1 0,0,
+2p7,) o105 by integration from Eq(32). We now use these = 1=p sin20)
results(and the analogous forms fés,) and(s3)) to obtain Oi=V1=pisin20). 40

(39

Note that wherp;=p,, the exponential exg) drops out of

Te=0,= 010\2+ piyt pas (35  the integral in Eq(39), giving the result

Note that Eq.(35) reduces to Eq(14) whenp;,=0=ps,. gexpp,p,z) =€ (4D)

We note that a realistic dynamo may depart significantly}; is evident from Eqs(29) and (36) that
from our calculations. Recent results in dynamo theory in
fact suggest that Alfue waves play a key role in magnetic gexp(p1,p2,2) =gexp p,,p1,2). (42)
field generatiorf14,15. This in turn implies a strong local
correlation(neglected in this sectiorbetween the velocity Figure 1 showsgexp(p;,p2,—|2), evaluated numerically
and magnetic fields, since Alfuewaves satisfyu-b/|u||b] ~ for the casep;=p,=0.9 andp; = —p,=0.9. The first case
==+1. corresponds to an exponential, as indicated by(Eg), and

hence has a kurtosis of 6. The other case shows a flatter
function, yielding a kurtosis of 8.89. In fact, when—1

_ ] and p,— —1, andz—2x;X,, which implies, according to
We focus now on a model for the case in which the crosseq, (21), that f(z2)— (7o, ~*Ko(|z|/o). That is,

helicity is finite (see the discussion in the preceding segtion

C. Cross helicity-type correlated Gaussians

and the mean induced electric field is zéooH .+ 0, e=0). . 2
The cross helicity is one of the rugged ideal invariants in lim gexp(p,—p,—|2|)=7 Ko(|2)). (43
MHD and is present in many real world turbulent systems. p—1

The inner solar wind, for example, has non-negligible cros
helicity [16] as a general rule, although in some case
[17,18, especially in the outer heliosphef&9], the cross
helicity is very small. In the extreme case in which the cross
helicity is maximum(i.e., when the normalized cross helicity =~ So far we have assumed the validity of E#0), that is,

is 1), however, no turbulence is possible, since the nonlino, o, = o, 0. We note that even though variance isotropy
ear terms in the MHD equations completely vanign]. implies Eg.(10), such a relationship does not require vari-

gn particular, in this limit the kurtosis is Psee Eq(13)].

D. Variance anisotropic turbulence

026310-4
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20 TN

1.5¢ n 1

1.0r

gexp(—[z)

051 P 1

0.0 /l 1 1 -
-4

FIG. 1. Functiong exp(p1,0p,,—|2) for different parameters:
(p1,p2)=(0.9,0.9) in solid line, and0.9,-0.9) in dashed. The kur-
tosis for these two cases is, respectively, 6 and 8.8.
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1.0 ]

0.8 1

f(z)

0.2¢ b

0.0 e’
-4 -2 0
z

FIG. 2. In solid line, the PDF for a random varialte=x;x,
—X3X4. The{x;} variables are generated with a Gaussian random
number generator, and satisty=o30,/0,0,=0.1[see Eq.(44)].

In dashed line: the exact result for the PDFzdh the limit \—0

ance isotropy. For instance, consider the situation of comfsee Eq.(48)].

pressible MHD turbulence in presence of a dc field in zhe
direction. In this caseg, ~0, >0, , and o, ~ T, > 0p

z

X,. It is straightforward to show that both for uncorrelated

[12]. We immediately see that the variance isotropic result$@ussians and cross-helicity-type correlated Gaussians we
are valid fore, due to variance isotropy in the perpendicular °Ptain[see Eq(21)]

planes(variance axisymmetjy For the perpendicular com-

ponents ok, on the other hand, the variance isotropic results

are valid if qulo'vy:abzlo'bz and O'UZIO'UX=0'by/0'bZ,
which might be approximately satisfied in some situations.

Even though we do not find analytical results for the gen
eral anisotropic case, there is a limit that is analytically trac

table. This is the limit in which

0304

A=

—0. (44

01072

Note that this limit would occur, for instance, if one of the

fluctuating fields was plane polarized, but the other was vari&'® related t&o

ance isotropic, in this case, the componente @i the po-
larization plane would both satisfy EGi4). Let us write Eq.
(A3) in the form

X 82— (X1Xo— X3X4) JdX; X, AXgdX,, (45)
where F(x1,X5,X3,X4) IS the joint PDF forxy,X,,X3,X4.
Making the change of variablés=x; /o, 2=2z/(0,0,), we
can rewrite Eq(45) as

N Z=NXXs _ . | 0% -
f(2)20304f Fl —5—%2,X3, X4 | 757 d%sd X4,
X2 %o|
(46)
and taking the limit\ —0,
. zZ _ o _\d%
f(Z)—>0'30'4f F ,.,_,Xz,Xg,X4 ,.,_d’s(3d7(4. (47)
X2 X2

f(e)— (48

e
0,0y

g, 0 KO(
] ]

ViU

and for dynamo-type correlated Gaussians we oljtsn Eq.

(32]

|

e

f(e)— : aE(l—pz)a'Uio'Uj

(49

ko

V1-p? p(p
exp —
a a

andp=<e|>/aviavj. Note that all the solutions in this limit
functions. We recall tha, diverges loga-
rithmically at the origin, and decays faster than a simple
exponential,

Ko(|z|)~—ln(% +C, |z]=1, (50)
1/2e7\z|
e

C~—0.577215 is Euler’s constant.

Figure 2 shows the distribution functioi(z) for small
but finite A =0.1. The Gaussian random variableg; for the
plot are obtained with a Gaussian random number generator.
Except for the discrepancy at the origin, the PDF Zois
fairly close to the asymptotic solution E@48). The plot
shows thah does not need to get too small for the PDF to be
close to Eq.(48).

IIl. NUMERICAL RESULTS

We solve the standard MHD incompressible dissipative

Note that the dependence iR5(X,) can be integrated in a equations using a pseudospectral Fourier technique as de-
first step, and finally the problem reduces to an integral irscribed in Ref[21]. We label our runs as followsi) 1SO
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O.8 T T T O.8 T T T
0.6 1 0.6 1
3 04t - S o4y -
0.2 1 0.2 1
0.0 L 1 1 1 0.0 1 1 1 L
-4 -2 0 2 4 -4 -2 0 2 4
e, e,

FIG. 3. In solid line, the PDF for one component of the electric  FIG. 4. In solid line, the PDF for one component of the electric
field (in units of its standard deviatipnas computed from the iso- field (in units of its standard deviatipnas computed from the dc
tropic simulation att=3t,. In dashed line: the exponential PDF simulation at=3t,. In dashed line: the exponential PDF predicted
predicted by Eq(27). by Eq.(27).

run. This is an isotropic run, with no dc field. We lx,t) ~ Nnents ofv andb (not shown always lie close to a Gaussian,
andb(x,t) relax in time, from an isotropic initial condition which is consistent with the quasinormal assumption of this

with no net mean magnetic field. work, and in general with the quasinormal character of the

(i) dc run. We let a dc magnetic fieB,=B,2 act on the  turbulence. ,
plasma, and study the relaxation of the MHD fig(c,t) and A way to quantify the departure of the observed PDFs
B(x,t) =By+b(x,1). from the predicted values is to measure their kurtosis. The
Both runs start with isotropic, power-law. random-phasek“rtOSiS for the components efhas an interesting behavior,

Gaussian ¥,b) fields, with unit energy, zero cross helicity shown in Figs. 4 and 5. I'F seems evident that the kurtosis
and zero magnetic helicity. Note that these simulationéends to be smaller than 6 in the ISO case, and greater than 6

should not be expected to produce significant dynamo activil the dc case. Nonetheless, the departure from the predicted
ity since there is a lack of helicifL,22] in the preparation of value of 6 is always relatively small. Moreover, the departure

the system and there is no forcing. More explicitly, the initial ©f the fieldsv andb themselves from Gaussianity is very
fields are such that small, with typical values for the kurtosis of their compo-

nents between 3 and 3.1. We estimate the intrinsic statistical
error of these measurements as the standard deviation of the
set of values of the kurtosis for the componentsyand b

from the initial condition(which we recall are generated nu-
merically as uncorrelated Gaussian variapl&se thus ob-
whereky.— 4Ko, Ko being the smallest wave number of the tain a value of 0.05 for the statistical error in computing
system.EV(k) and EP(k) are, respectively, the kinetic and K(v;) andK(b;). We finally note that fott>0, about two-

E’(k)=EP(k)= T (kg™ (52

the magnetic omnidirectional power spectra. We defige

=27/Kees OUr “energy containing scale,” as the unit 7.0 ' '
length,uq as the unit velocity and magnetic fie{cecall that
the magnetic field is written in velocity unjtsand I, 65 1

=Lg/ug as the unit time. The normalization const&htn
Eq. (52 is chosen so thath?)=(v?)=23,E"P(k)=1 (at
t=0). For the dc runBy.=1 as well. The magnetic Prandtl
number is set to 1, the macroscopic Reynolds numb& is
=UoL /=200 and the resolution is 12 all the runs. In
all cases the solutions approximately satisfy variance isot-
ropy: (v =(v§)=(vy), (b3)=(bj)~(b3), where the
brackets() mean here spatial average over the whole com-
putational volume. The fluctuating fieldsandb average to
zero at all times{vy=0=(b). These simulations were re-
cently analyzed in the context of local development of an-
isotropy in MHD [23].

Figure 3 shows the PDF fa, for the ISO run, at=3.

K(e)

6.0

5.5

5.0

t/t

FIG. 5. In solid line, the PDF for one component of the electric
field (in units of its standard deviatipnas computed from the iso-

The PDF is remarkably close to the exponential function Eqtropic simulation. For each value of time, the vallige,), K(ey),

(27), as it turns out from the figure. The dc run yields aandK(e,) are used to compute a mean valdésplayed as a cross
similar result, as shown in Fig. 4. The PDFs for the compo-and the statistical errqidisplayed as a vertical bar
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thirds of the values of the kurtosis for the componenty of 7.0 ' '
andb in our simulations are outside the range 3:@05.
We conclude that the evolution of our fields is very close to,

but not trivially Gaussian. 6.5 % »’ x ]

6.0r % 1

55} 1

IV. SUMMARY AND CONCLUSIONS

K(e)

In the present paper we study the statistical properties of
the induced turbulent electric field for a magnetohydrody-
namic(MHD) plasma under the quasinormal approximation.
In Sec. Il we assume exact Gaussianity for both the turbulent
velocity field v and the turbulent magnetic fieldl and find 5.0 L ‘
analytical expressions for the PDF for the components of the 0 1 2 3
fluctuating induced electrical field=—vxb in some cases t/t
of interest. The simplest and most appealing result is ob-
tained when statistical independence is assumed for the comy

ponents olv andb. In this case, the PDF fa is simply an simulation. For each value of time, the valuége,), K(e,), and

exponential, see E¢27). As mentioned above, statistical (e ) are used to compute a mean valdésplayed as a crosand
independence implies zero cross helidity, and zero mean he statistical errotdisplayed as a vertical bar

turbulent induced electric fielde) (i.e., impossibility of a
dynamo effedt In Secs. IIB and Il C we allow correlations
between the components wfand b, to extend the model,
respectively, to the cases of fini{e) and finiteH.. In the
former case, we obtain an analytical result wRenb;)=

FIG. 6. In solid line, the PDF for one component of the electric
d (in units of its standard deviatignas computed from the dc

merical simulations of the MHD equations at moderate Rey-
nolds numbers, where we investigate turbulent relaxation
from a broad-band initial condition, with no cross helicity.
; The PDFs for the components efare remarkably close to
—(vjby), i.e., Eq.(34): the PDF turns out to be an exponen- o eynonential function predicted in E@7), as shown in
tial of the form exp(-|a|/o.) for €>0, and an exponential Figs 3 and 4. The dynamical departure from the exponential
of the form exp(-|g |/o_) for € <0. The PDF for the latter ppE seems to depend on the presence of a background, dc
case can be written in terms of a functigrexplpy,p2,2,  magnetic field. Figures 5 and 6 seem to indicate that in the
which also reduces to an exponential when PDF whenpnsence of a dc field the kurtosis is slightly smaller than 6,
(vibj)=(v;b;), as indicated by Eqg38)—(41). while in the presence of a dc field it is slightly greater than 6.
All of these_results assume variance isotropy for the tury ore numerical exploration may be needed to confirm this
bul_ent fluctu-atlons. In Sec. IID we show that the effects ofyrend. But in general, the comparison between the numerical
variance anisotropy are measured by a single parameter gng the analytical results allows us to be confident that the
=0,,0p, /0,00, We find that for extreme variance anisot- analytical results give a very good first-order approximation
ropy (\—0), the three cases considered before, uncor-  to the problem, at least at moderate Reynolds numbers.
related Gaussians, dynamotype correlated Gaussians and
cross-helicity-type Gaussiangive solutions related to modi-
fied Bessel function&, [see Eqs(48) and (49)].

The use of exact normality in our calculations raises sev- This research was supported in part by the National Sci-
eral warnings. To begin with, the PDF allows computation ofence Foundation under Grant No. ATM-9713595, and by the
statistical moments of arbitrary order, while it is very well National Aeronautics and Space Administration Sun-Earth
known that higher-order moments are usually more prone t€onnection Theory program at Bartol, NAG5-7164. This re-
depart from Gaussian statistics than lower-order momentsearch has made use of NASAs Astrophysics Data System
are. Another point to consider is the fact that statistics forapstract Service.
two-point correlations are usually very far from Gaussian if
the separation between the correlated points {siirtlose t9
the dissipation rangésee for instancg6,11]). In this regard APPENDIX:  SOME USEFUL RELATIONS
our one-point calculations are in the most favorable case, i.e., | gt 7 be a random variable that depends on another ran-
the limit in which the separation tends to the integral scaljom variablex, then
and the statistics are closer to being Gaussian. But any ex-
tension of our calculations to two-point correlations needs to
be done carefully. Finally, it needs to be kept in mind that f(z):f p(z|x)f(x)dx, (A1)
closure theoriegsmore specifically the EDQNMhad to re-
fine the quasinormal approximation to the point of adding a
phenomenological eddy viscosity and Markovianization inwheref is a PDF for its variable ang(z|x) is the conditional
order to obtain physical results for the evolution of the en-probability distribution for z given x. Consider now
ergy spectrum. Even though this issue is also related to twahe special case in which is deterministically related to
point statistics, it should not be disregarded. x by a known functionz=(x). In this case,p(z|x)

In Sec. Il we report results from three-dimensional nu-= 8(z— (x)),
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integral onXz, which is of the form/f exp(—A">‘<3—B‘>§)dx3
=\/m/B exp(@?4B), where bothA and B>0 are constant

with respect t&;. Rearranging terms and making a change

The. extension of this. result to multiple dimengions ISt polar variablesX, %,)— (r, ), we can write the remain-
straightforward. If {x;} is a set ofn random variables ing two-dimensional integral as

{X1*Xp}, then

f(z)=f f(X) 8(z— (x))dx. (A2)

= [ 1 )8z U ;- ‘@) ! | ;{ O 2
zZ)= Xq,....X Z— (Xq,... X X1 dX,, 7)= exg ————=—r
1 n 1 n 1 n . (277)3/20102\/1_’)54 2(1—p3,)
. . . 7 drdo
wheref(xq,...,X,) is the joint PDF of thgx;} variables. ———r2 o (A4)
We now show how to obtain the PDF for the cross- 202 23

helicity-type case, Eq38), from Eq.(36). Our first step is to

make a change to nondimensional variables, as in(#). where we defined®;;=1—p;;sin(2f). Making a last
We note that hera =1 (i.e., we are assuming variance isot- change in variables —f according to[®§4/2(1—p§4)]r2

ropy). We replace 8(z— (X;Xo— XgX4))= 8(o105[Z2— (%X,  =[Z|f?, the integral inf takes the form fexp(—|Z|(F?

—%3%X4) )= (U[Xq| 0107) 8(Xy— 2% —X5X4 /%) in Eq. (36)  —A%47?)dPcexp@fZ), where A depends ord. The exact
and compute the trivial integral &,. We then compute the result is shown in Eq(38).
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